Box 11.4 - Atmospheric Distribution

We consider a cylinder (cross-section A) filled with a gas (molecules with mass m) as displayed in Figure 11.23. We select a layer of thickness Δx (volume $V = A - \Delta x$). The number N of molecules in this layer is related to the pressure P:

$$PV = NkT, \quad N = \frac{PV}{kT} = \frac{PA \cdot \Delta x}{kT}$$

The force of gravity acting on one molecule is f = mg (g = gravitational acceleration). This means that there is a pressure change $\Delta P = P_{x+\Delta x} - P_x$ in the gas

$$\Delta P = -\frac{N \cdot mg}{A} = -\frac{P\Delta x \cdot mg}{kT}$$

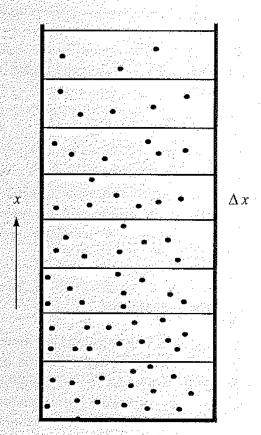


Figure 11.23 Layers of thickness Δx (atmospheric distribution).

Continued from page 382

By replacing the differences by differentials

$$dP = -P\frac{mg}{kT} \cdot dx$$
 or $\frac{dP}{P} = -\frac{mg}{kT} \cdot dx$

and integration we obtain the atmospheric distribution function

$$P = P_0 \cdot e^{-mgx/(kT)}$$
 or $c = c_0 \cdot e^{-mgx/(kT)}$

where P_0 is the pressure at x = 0 and c_0 is the concentration at x = 0.

Example

With $x=8882\,\mathrm{m}$ (this is the height of Mount Everest), $m=28\,\mathrm{g\,mol^{-1}}/(6.022\times10^{23}\,\mathrm{mol^{-1}})=4.65\times10^{-26}\,\mathrm{kg}$ (value for nitrogen) and $g=9.81\,\mathrm{m/s^2}$ we obtain for $T=273\,\mathrm{K}$ (as an average of the temperature at x=0 and $x=8882\,\mathrm{m}$), $P=P_0\cdot\mathrm{e^{-1.08}}=0.34\cdot P_0$. This means that the atmospheric pressure on top of Mount Everest is only one-third of the atmospheric pressure on sea level. On the other hand, if we choose x on the order of laboratory dimensions ($x=1\,\mathrm{m}$) we obtain $P=0.99987P_0$; this is a decrease by 1×10^{-4} only.